Mojo combines the usability of Python with the performance of C, unlocking unparalleled programmability of AI hardware and extensibility of AI models.
def softmax(lst):
norm = np.exp(lst - np.max(lst))
return norm / norm.sum()
def softmax(lst):
norm = np.exp(lst - np.max(lst))
return norm / norm.sum()
struct NDArray:
def max(self) -> NDArray:
return self.pmap(SIMD.max)
struct SIMD[type: DType, width: Int]:
def max(self, rhs: Self) -> Self:
return (self >= rhs).select(self, rhs)
Usability & Programmability
Write Python or scale all the way down to the metal. Program the multitude of low-level AI hardware. No C++ or CUDA required.
def sort(v: ArraySlice[Int]):
for i in range(len(v)):
for j in range(len(v) - i - 1):
if v[j] > v[j + 1]:
swap(v[j], v[j + 1])
struct MyPair:
var first: Int
var second: F32
def __init__(self, first: Int, second: F32):
self.first = first
self.second = second
def reorder_and_process(owned x: HugeArray):
sort(x) # Update in place
give_away(x^) # Transfer ownership
print(x[0]) # Error: ‘x’ moved away!
def exp[dt: DType, elts: Int]
(x: SIMD[dt, elts]) -> SIMD[dt, elts]:
x = clamp(x, -88.3762626647, 88.37626266)
k = floor(x * INV_LN2 + 0.5)
r = k * NEG_LN2 + x
return ldexp(_exp_taylor(r), k)
def exp_buffer[dt: DType](data: ArraySlice[dt]):
# Search for the best vector length
alias vector_len = autotune(1, 4, 8, 16, 32)
# Use it as the vectorization length
vectorize[exp[dt, vector_len]](data)
Progressive Types
Leverage types for better performance and error checking.
Zero Cost Abstractions
Take control of storage by inline-allocating values into structures.
Ownership + borrow checker
Take advantage of memory safety without the rough edges.
Portable parametric algorithms
Leverage compile-time meta-programming to write hardware-agnostic algorithms and reduce boilerplate.
LANGUAGE INTEGRATED Auto-tuning
Automatically find the best values for your parameters to take advantage of target hardware.
The full power of MLIR
Parallel heterogenous runtime
Fast compile times
def sort(v: ArraySlice[Int]):
for i in range(len(v)):
for j in range(len(v) - i - 1):
if v[j] > v[j + 1]:
swap(v[j], v[j + 1])
Features include:
Progressive Types
Leverage types for better performance and error checking.
struct MyPair:
var first: Int
var second: F32
def __init__(self, first: Int, second: F32):
self.first = first
self.second = second
Features include:
Zero Cost Abstractions
Take control of storage by inline-allocating values into structures.
def reorder_and_process(owned x: HugeArray):
sort(x) # Update in place
give_away(x^) # Transfer ownership
print(x[0]) # Error: ‘x’ moved away!
Features include:
Ownership + borrow checker
Take advantage of memory safety without the rough edges.
def exp[dt: DType, elts: Int]
(x: SIMD[dt, elts]) -> SIMD[dt, elts]:
x = clamp(x, -88.3762626647, 88.37626266)
k = floor(x * INV_LN2 + 0.5)
r = k * NEG_LN2 + x
return ldexp(_exp_taylor(r), k)
Features include:
Portable parametric algorithms
Leverage compile-time meta-programming to write hardware-agnostic algorithms and reduce boilerplate.
def exp_buffer[dt: DType](data: ArraySlice[dt]):
# Search for the best vector length
alias vector_len = autotune(1, 4, 8, 16, 32)
# Use it as the vectorization length
vectorize[exp[dt, vector_len]](data)
Features include:
LANGUAGE INTEGRATED Auto-tuning
Automatically find the best values for your parameters to take advantage of target hardware.
Utilize the full power of the hardware, including multiple cores, vector units, and exotic accelerator units, with the world’s most advanced compiler and heterogenous runtime. Achieve performance on par with C++ and CUDA without the complexity.
Parallelization
Mojo leverages MLIR, which enables Mojo developers to take advantage of vectors, threads, and AI hardware units.
PYTHON
Single-threaded execution
Mojo 🔥
Parallel processing across multiple cores
Instance
AWS r7iz.metal-16xl
Intel Xeon
Experience true interoperability with the Python ecosystem. Seamlessly intermix arbitrary libraries like Numpy and Matplotlib and your custom code with Mojo.
def make_plot(m: Matrix):
plt = Python.import_module("matplotlib.pyplot")
fig = plt.figure(1, [10, 10 * yn // xn], 64)
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0], False, 1)
plt.imshow(image)
plt.show()
make_plot(compute_mandelbrot())
Easily extend your models with pre and post-processing operations, or replace operations with custom ones. Take advantage of kernel fusion, graph rewrites, shape functions, and more.
Model extensibility
Mojo can upgrade the existing operations in your model.
Input layer
Hidden layers
Output layer
Mojo is still a work in progress, but it’s available to try today in our JupyterHub-based Playground. Run through tutorials and write your own Mojo code.
01.
EASY TO GET STARTED
We have plenty of easy-to-use Jupyter notebooks to help you get started learning Mojo 🔥.
02.
Unleash your mojo
Our docs will help you quickly discover why Mojo is such a powerful extension to Python, and the future of AI programming.