1. Bigalke H, Shoer LF. In: Clostridial neurotoxins: Handbook of experimental pharmacology. Aktories K, Just I, editors. Berlin: Springer Verlag; 2001. pp. 407–47. [Google Scholar]

2. Hatheway CL. Clostridium botulinum and other Clostridia that produce botulinum neurotoxins. In: Hauschild AHW, Dodds KL, editors. Clostridium botulinum: Ecology and control in foods. New York: Marcel Dekkar; 1992. pp. 3–20. [Google Scholar]

3. Lamanna C. The most poisonous poison. Science. 1959;130:763–72. [PubMed] [Google Scholar]

4. Dolman CE. Botulism as a world health problem. In: Lewis KH, Kassel K Jr, editors. Botulism. Cincinnati: Ohio: U.S: Public Health Service; 1964. pp. 5–32. Department of Health, Education, and Welfare. [Google Scholar]

5. Van Ermengem E. About a new anaerobic bacillus and its relationship to botulism. Z Hyg Infektionskr. 1897;26:1–56. [Google Scholar]

6. Bengston IA. Studies on organisms concerned as causative factors in botulism. Hyg Lab Bull. 1924;136:101. [Google Scholar]

8. Hughes JM, Blumenthal JR, Merson MH, Lombard GL, Dowell VR, Jr, Gangarosa EJ. Clinical features of type A and B food-borne botulism. Ann Intern Med. 1981;95:442–5. [PubMed] [Google Scholar]

9. Hatheway CL. Botulism: the present status of the disease. Curr Top Microbiol Immunol. 1995;195:55–75. [PubMed] [Google Scholar]

10. Hatheway CL. Botulism. In: Balows A, Hausler WH, Ohashi M, Turnano A, editors. Laboratory diagnosis of infectious diseases: principles and practice. vol. 1. Berlin Heidelberg Springer: New York; 1988. pp. 111–33. [Google Scholar]

11. Hauschild AHW. Epidemiology of human foodborne botulism. In: Hauschild AHW, Dodds KL, editors. Clostridium botulinum Ecology and Control in foods. New York: Marcel Dekker; 1992. pp. 68–104. [Google Scholar]

12. Angulo FJ, Getz J, Taylor JP, Hendricks KA, Hatheway CL, Barth SS, et al. A large outbreak of botulism: the hazardous baked potato. J Infect Dis. 1998;178:172–7. [PubMed] [Google Scholar]

13. Botulism associated with canned chili sauce. Atlanta: CDC; 2007. Centers for Diseases Control (CDC) July-Aug. [Google Scholar]

14. Chou JH, Hwant PH, Malison MD. An outbreak of type A foodborne botulism in Taiwan due to commercially preserved peanuts. Int J Epidemiol. 1988;17:899–902. [PubMed] [Google Scholar]

15. Kalluri P, Crowe C, Reller M, Gaul L, Hayslett J, Barth S, et al. An outbreak of foodborne botulism associated with food sold at a salvage store in Texas. Clin Infect Dis. 2003;37:1490–5. [PubMed] [Google Scholar]

16. O’Mahony M, Mitchell E, Gilbert RJ, Hutchinson DN, Begg NT, Rodhouse JC, et al. An outbreak of foodborne botulism associated with contaminated hazelnut yoghurt. Epidemiol Infect. 1990;104:389–95. [PMC free article] [PubMed] [Google Scholar]

17. St Louis ME, Peck SH, Bowering GB, Bltherwick J, Banerjee S, Kettyls GD, et al. Botulism from chopped garlic: delayed recognition of a major outbreak. Ann Intern Med. 1988;108:363–8. [PubMed] [Google Scholar]

18. Steth AN, Wiersma P, Atrubin D, Dubey V, Zink D, Skinner G, et al. International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin Infect Dis. 2008;47:1245–51. [PubMed] [Google Scholar]

19. Villar RG, Shapiro RL, Busto S, Riva-Posse C, Verdejo G, Farace MI, et al. Outbreak of type A botulism and development of a botulism surveillance and antitoxin release system in Argentina. JAMA. 1999;281:1334–8. [PubMed] [Google Scholar]

20. Midura TF, Arnon SS. Infant botulism: Identification of Clostridium botulinum and its toxin in feces. Lancet. 1976;2:934–6. [PubMed] [Google Scholar]

21. Shapiro RL, Hatheway CL, Swerdlow DL. Botulism in the United States:A clinical and epidemiological review. Ann Intern Med. 1998;129:221–8. [PubMed] [Google Scholar]

22. Arnon SS. Human tetanus and human botulism. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The Clostridia: Molecular biology and pathogenesis. London: Academic press; 1997. pp. 95–115. [Google Scholar]

23. Arnon SS, Midura TF, Damus K. Honey and other environmental risk factors for infant botulism. J Pediatr. 1979;194:331–6. [PubMed] [Google Scholar]

24. Nevas M, Lindstrom M, Virtanen A, Hielm S, Kuusi M, Arnon SS, et al. Infant botulism acquired from household dust presenting as sudden infant death syndrome. J Clin Microbiol. 2005;43:511–3. [PMC free article] [PubMed] [Google Scholar]

25. Koepke R, Sobel J, Arnon SS. Global occurrence of infant botulism, 1976-2006. Paediatrics. 2008;122:73–82. [PubMed] [Google Scholar]

26. Passaro DJ, Werner SB, McGee J, MacKenzie WR, Vugia DJ. Wound botulism associated with black tar heroin among injecting drug user. JAMA. 1998;279:859–63. [PubMed] [Google Scholar]

27. Brett MM, Hood J, Brazier JS, Duerden BI, Hahne SJ. Soft tissue infections caused by spore-forming bacteria in injecting drug users in the United Kingdom. Epidemiol Infect. 2005;133:575–82. [PMC free article] [PubMed] [Google Scholar]

28. Preuss SF, Veelken F, Galldiks N, Klussmann JP, Neugebauer P, Nolden-Hoverath S, et al. A rare differential diagnosis in dysphagia: wound botulism. Laryngoscope. 2006;116:831–2. [PubMed] [Google Scholar]

29. Artin I, Bjorkman P, Cronqvist J, Radstrom P, Holst E. First case of type E wound botulism diagnosed using real-time PCR. J Clin Microbiol. 2007;45:3589–94. [PMC free article] [PubMed] [Google Scholar]

31. Smith LDS, Sugiyama H. Botulism: The organism, its toxins, the disease. 2nd ed. Springfield, Illinois: Charles C Thomas; 1988. p. 171. [Google Scholar]

32. Dutra IS, Seifert HSH. Water holes- incubation areas for botulism in Brazil? In: Bohnel H, editor. Proceeding of the 1st International conferrence on identification and immunbiology of Clostridia: Diagnosis and prevention of clostridioses. Teistungen: Germany; 1998. [Google Scholar]

33. Eklund MW. Control in fishery products. In: Hauschild AHW, Dodds KL, editors. Clostridium botulinum. Ecology and control in foods. New York: Marcel Dekker; 1992. pp. 209–32. [Google Scholar]

34. Myllykoski J, Lindstrom M, Keto-Timonen R, Soderholm H, Jakala J, Kallio H, et al. Type C bovine botulism outbreak due to carcass contaminated non-acidified silage. Epidemiol Infect. 2008;7:1–10. [PubMed] [Google Scholar]

35. Holzer E. Botulism caused by inhalation. Med Klin. 1962;41:1735–40. [PubMed] [Google Scholar]

36. Franz DR, Pitt LM, Clayton MA, Hanes MA, Rose KJ. Efficacy of prophylactic and therapeutic administration of antitoxin for inhalation botulism. In: DasGupta BR, editor. Botulinum and tetanus Neurotoxins and Biomedical aspects. New York: Plenum Press; 1993. pp. 473–6. [Google Scholar]

37. Park JB, Simpson LL. Inhalational poisoning by botulinum toxin and inhalational vaccination with its heavy chain component. Infect Immun. 2003;71:1147–54. [PMC free article] [PubMed] [Google Scholar]

38. Sobel J. Botulism. Clin Infect Dis. 2005;4:1167–73. [PubMed] [Google Scholar]

39. Chertow DS, Tan ET, Maslanka SE, Schulte J, Bresnitz EA, Weisman RS, et al. Botulism in 4 adults following cosmetic injections with an unlicensed highly concentrated botulinum preparation. JAMA. 2006;296:2476–9. [PubMed] [Google Scholar]

40. Chaudhry R, Dhawan B, Kumar D, Bhatia R, Gandhi JC, Patel RK, et al. Outbreak of suspected Clostridium butyricum botulism in India. Emerg Infect Dis. 1998;4:506–7. [PMC free article] [PubMed] [Google Scholar]

41. Agarwal AK, Goel A, Kohli A, Rohtagi A, Kumar R. Food-borne botulism. J Assoc Physicians India. 2004;52:677–8. [PubMed] [Google Scholar]

42. Dhaked RK, Sharma SK, Parida MM, Singh L. Isolation and characterization of Clostridium botulinum Type ‘E’ from soil of Gwalior, India. J Nat Toxins. 2002;11:49–56. [PubMed] [Google Scholar]

43. Lalitha KV, Gopakumar K. Distribution and ecology of Clostridium botulinum in fish and aquatic environments of a tropical region. Food Microbiol. 2000;17:535–41. [Google Scholar]

44. Lalitha KV, Surendran PK. Occurrence of Clostridium botulinum in fresh and cured fish in retail trade in Cochin (India) Int J Food Microbiol. 2002;72:169–74. [PubMed] [Google Scholar]

45. Joshy L, Chaudhry R, Chandel DS. Multiplex PCR for the detection of Clostridium. botulinum & C. perfringens toxin genes. Indian J Med Res. 2008;128:206–8. [PubMed] [Google Scholar]

46. Leuchs J. Contributions to the knowledge of the toxin and antitoxin of Bacilius botulinus. Ztschr Hyg Infektskh. 1910;65:55–84. [Google Scholar]

48. Seddon HR. Bulbar paralysis in cattle due to the action of toxicogenic bacillus, with a discussion on the relationship of the condition to forage poisoning (botulism) J Comp Pathol Therap. 1922;35:147–90. [Google Scholar]

49. Thieler A, Viljoen PR, Green HH, du Toit PJ, Meier H, Robinson EM. 11th and 12th Report of Director Veterinary Education and Research Part II, Sect. 5 Department of Agriculture. Union South Africa; 1927. Lamsiekte (parabotulism) in cattle in South Africa; pp. 1201–11. [Google Scholar]

50. Gunnison JB, Cummings JR, Meyer KF. Clostridium botulinum type E. Proc Soc Exp Biol Med. 1953;35:278–80. [Google Scholar]

51. Moller V, Scheibel I. Preliminary report on the isolation of an apparently new type of Clostridium botulinum. Acta Pathol Microbiol Scand. 1960;48:80. [PubMed] [Google Scholar]

52. Gimenez DF, Ciccarelli AS. Another type of Clostridium botulinum. Zentralbl Bakteriol Prasiten kd Infektionskr Hyg Abt 1 Orig. 1970;A215:221–4. [PubMed] [Google Scholar]

53. Lee WH, Reimann H. The genetic relatedness of proteolytic Clostridium botulinum strains. J Gen Microbiol. 1970;64:85–90. [PubMed] [Google Scholar]

54. Holdeman LV, Brooks JB. Variations among strains of Clostridium botulinum and related clostridia. In: Herzberg M, editor. Proceedings of the First US-Japan conference on toxigenic microorganisms. Washingtan: US Government Printing Office; 1970. pp. 278–86. [Google Scholar]

55. Hutson RA, Thompson DE, Lawson PA, Schocken-Itturino RP, Bottger EC, Collins MD. Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie van Leeuwenhoek. 1993;64:273–83. [PubMed] [Google Scholar]

56. Hutson RA, Thompson DE, Collins MD. Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol Lett. 1993;108:103–10. [PubMed] [Google Scholar]

57. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994;44:812–26. [PubMed] [Google Scholar]

58. Smith LDS, Hobbs G. Genus III. Clostridium prazmowski 1980, 23. In: Buchanen RE, Gibson NE, editors. Bergey’s mannual of determinative bacteriology. 8th ed. Baltimore: Williams & Wilkins; 1974. pp. 551–72. [Google Scholar]

59. Suen JG, Hatheway CL, Steigerwalt AG, Brenner DJ. Clostridium botulinum sp. nov: A genetically homogenous group composed of all strains of Clostridium botulinum toxin type G and some non-toxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme. Int J Syst Bacteriol. 1988;38:375–81. [Google Scholar]

60. Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL. Two cases of type E infant botulism in Rome caused by neurotoxigenic Clostridium butyricum. J Infect Dis. 1986;154:207–11. [PubMed] [Google Scholar]

61. Hall JD, McCroskey LM, Pinkomb BJ, Hatheway CL. Isolation of an organism resembling Clostridium beratii which produce type F botulinal toxin from an infant with botulism. J Clin Microbiol. 1985;21:654–5. [PMC free article] [PubMed] [Google Scholar]

62. Minton NP. Molecular genetics clostridial neurotoxins. Curr Top Microbiol Immunol. 1995;95:161–95. [PubMed] [Google Scholar]

63. Brinkac LM, Daugherty S, Dodson RJ, Madupu R, Brown JL, Bruce D, et al. Complete sequence of Clostridium botulinum strain Langeland/NCTC10281/Type F Submitted to the EMBL/GenBank/DDBJ databases. 2007 JUN. [Google Scholar]

64. Brinkac LM, Brown JL, Bruce D, Detter C, Munk C, Smith LA, et al. Complete sequence of Clostridium botulinum strain type B Eklund. Submitted to the EMBL/GenBank/DDBJ databases. 2008 APR. [Google Scholar]

65. Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MTG, Mitchell WJ, et al. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 2007;17:1082–92. [PMC free article] [PubMed] [Google Scholar]

66. Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, et al. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS ONE. 2007;2:E1271–E1271. [PMC free article] [PubMed] [Google Scholar]

67. Shrivastava S, Brinkac LM, Brown JL, Bruce D, Detter CC, Johnson EA, et al. Genome sequence of Clostridium botulinum A2 Kyoto. Submitted to the EMBL/GenBank/DDBJ databases. 2008 OCT. [Google Scholar]

68. Shrivastava S, Brown JL, Bruce D, Detter C, Munk C, Smith LA, et al. Genome sequence of Clostridium botulinum Ba4 strain 657. Submitted to the EMBL/GenBank/DDBJ databases. 2008 MAY. [Google Scholar]

69. Peck MW. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? J Appl Micrbiol. 2006;101:556–70. [PubMed] [Google Scholar]

70. Schiavo G, Rossetto O, Tonello F, Montecucco C. Intracellular target and metalloprotease activity of tetanus and botulinum neurotoxins. Curr Top Microbiol Immunol. 1995;195:257–74. [PubMed] [Google Scholar]

71. Villar RG, Elliot SP, Davenport KM. Botulism: the many faces of botulinum toxin and its potential for bioterrorism. Infect Dis Clin N Am. 2006;20:313–27. [PubMed] [Google Scholar]

72. Sugii S, Sakaguchi G. Molecular construction of Clostridium botulinum type A toxins. Infect Immun. 1975;12:1262–70. [PMC free article] [PubMed] [Google Scholar]

73. Inoue K, Fuginaga Y, Watanabe T, Oshyama T, Takeshi K, Moriishi K, et al. Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun. 1996;64:1589–94. [PMC free article] [PubMed] [Google Scholar]

74. Chen F, Kuziemco GM, Stevens R. Biophysical characterization of the stability of the 150-Kilodalton botulinum toxin, the non-toxic component and the 900-Kilodalton botulinum toxin complex species. Infect Immun. 1998;66:2420–5. [PMC free article] [PubMed] [Google Scholar]

75. Sakaguchi G, Kozaki S, Ohnishi I. Structure and function of botulinum toxins. In: Alouf JE, Fehrenbach FJ, Freer JH, Jeljaszewics J, editors. Bacterial protein toxins. London: Academic Press; 1984. pp. 435–43. [Google Scholar]

76. Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994;13:1–8. [PubMed] [Google Scholar]

77. Schiavo G, Malizio C, Trimble WS, Polverino de Laureto P, Milan G, et al. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem. 1994;269:20213–6. [PubMed] [Google Scholar]

78. Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Sudhof TC, et al. Proteolysis of SNAP-25 by type E and A botulinum nerotoxins. J Biol Chem. 1994;269:1717–20. [PubMed] [Google Scholar]

79. Schiavo G, Rossetto O, Catsicas S, Polverino de Laureto P, DasGupta BR, et al. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem. 1993;268:23784–7. [PubMed] [Google Scholar]

80. Schiavo G, Santucci A, DasGupta BR, Mehta PP, Jontes J, Benfenati F, et al. Botulinum neurotoxin serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993;335:99–103. [PubMed] [Google Scholar]

81. Osen–Sand A, Staple JK, Naldi E, Schiavo G, Rossetto O, Petitpierre S, et al. Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol. 1996;367:222–34. [PubMed] [Google Scholar]

82. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, et al. Tetanus and botulism B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–5. [PubMed] [Google Scholar]

83. Schiavo G, Shone CC, Rossetto O, Alexander FC, Montecucco C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem. 1993;268:11516–9. [PubMed] [Google Scholar]

84. Yamazaki S, Baumeister A, Binz T, Blasi J, Link E, Cornille F, et al. Cleavage of members of synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem. 1994;269:12764–72. [PubMed] [Google Scholar]

85. Blasi J, Chapman ER, Yamasaki S, Binz T, Niemann H, Jahn R. Botulinum neurotoxin C1 block the release by means of cleavage HPC-1/syntaxin. EMBO J. 1993;12:4821–8. [PMC free article] [PubMed] [Google Scholar]

86. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C. Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem. 1995;270:10566–70. [PubMed] [Google Scholar]

87. Lilly T, Harmon SM, Kautter DA, Solomon HM, Lynt RK. An improved medium for detection of Clostridium botulinum type E. J Milk Food Technol. 1971;34:492–7. [Google Scholar]

88. Kautter DA, Solomon HM, Lake DE, Bernard DT, Mills DC. Clostridium botulinum and its toxin. In: Vanderzant C, Splittstoesser DF, editors. Compendium of methods for microbiological examination of foods. 3rd ed. Washington: American Public Health Association; 1992. pp. 605–21. [Google Scholar]

89. Dezfulian M, McCroskey LM, Hatheway CL, Dowell VR., Jr Selective medium for isolation of Clostridium botulinum from human feces. J Clin Microbiol. 1981;13:526–31. [PMC free article] [PubMed] [Google Scholar]

90. Hobbs G. Clostridium botulinum and its importance in fishery products. In: Chechester CO, Mrak EM, Stewart GF, editors. Advances in food research. New York: Academic Press Inc; 1976. pp. 135–85. [PubMed] [Google Scholar]

91. Varnam AH, Evans MG. Foodborne pathogens- an illustrated text. London: Wolfe Publishing; 1991. Clostridium botulinum; pp. 289–311. [Google Scholar]

92. Cato EP, George WL, Finegold SM. Genus Clostridium. In: Sneath PHA, Mair NS, Sharpe ME, Hold JG, editors. Bergey’s manual of systematic bacteriology. vol. 2. Baltimore, MA: Williams and Wilkins; 1986. pp. 1141–200. [Google Scholar]

93. Smoot LA, Pierson MD. Effect of oxidation-reduction potential on the outgrowth and chemical inhibition of Clostridium botulinum 10755A spores. J Food Sci. 1979;44:700–4. [Google Scholar]

94. Huss HH, Schaeffer I, Pedersen A, Jepsen A. Toxin production by Clostridium botulinum type E in smoked fish in relation to the measured oxidation reduction potential (Eh), packaging method, and associated microflora. Adv Fish Sci Technol. 1980;13:476–9. [Google Scholar]

95. Code for Federal Regulations (CFR). Thermally processed low-acid foods packaged in hermetically sealed containers: definitions. Title 21. Section 113.3. US Govt. Print Office Washington, DC. 1981 [Google Scholar]

96. Denny JB, Goeke DJ., Jr . National Canners Association. Washington DC: 1969. Inoculation of
Clostridium botulinum in canned bread with special reference to water activity; pp. 4–69. Res Rep No. [Google Scholar]

97. Emodi AS, Lechowich RV. Low temperature growth of type E Clostridium botulinum spores. 2. Effects of solutes and incubation temperature. J Food Sci. 1969;34:82–93. [Google Scholar]

98. Peruski AH, Johnson LH, Peruski LF. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Meth. 2002;263:35–41. [PubMed] [Google Scholar]

99. Dong M, Tepp WH, Johnson EA, Chapman ER. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc Natl Acad Sci USA. 2004;101:14701–6. [PMC free article] [PubMed] [Google Scholar]

100. Sharma SK, Ferreira JL, Eblen BS, Whiting RC. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl Environ Microbiol. 2006;72:1231–8. [PMC free article] [PubMed] [Google Scholar]

101. Liu W, Montana V, Chapman ER, Mohideen U, Parpura V. Botulinum toxin type B micromechanosensor. Proc Natl Acad Sci USA. 2003;100:13621–5. [PMC free article] [PubMed] [Google Scholar]

102. Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, et al. Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis. 2005;11:1578–83. [PMC free article] [PubMed] [Google Scholar]

103. Bagramyan K, Barash JR, Arnon SS, Kalkum M. Attomolar detection of botulinum toxin type A in complex biological matrices. PLoS ONE. 2008;3(4):e2041. [PMC free article] [PubMed] [Google Scholar]

104. Chao HY, Wang YC, Tang SS, Liu HW. A highly sensitive immuno-polymerase chain reaction assay for Clostridium botulinum neurotoxin type A. Toxicon. 2004;43:27–34. [PubMed] [Google Scholar]

105. Mason JT, Xu L, Sheng ZM, O’Leary TJ. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nat Biotechnol. 2006;24:555–7. [PubMed] [Google Scholar]

106. Varnum SM, Warner MG, Dockendorff B, Anheier NC, Jr, Lou J, Marks JD, et al. Enzyme-amplified protein microarray and a fluidic renewable surface fluorescence immunoassay for botulinum neurotoxin detection using high affinity recombinant antibodies. Analytica Chimica Acta. 2006;570:137–43. [PubMed] [Google Scholar]

107. Ferracci G, Miquelis R, Kozaki S, Seagar M, Leveque C. Synaptic vesicle chips to assay botulinum neurotoxins. J Biochem. 2005;391:659–66. [PMC free article] [PubMed] [Google Scholar]

108. Ahn-Yoon S, DeCory TR, Durst RA. Ganglioside–liposome immunoassay for the detection of botulinum toxin. Anal Bioanal Chem. 2004;378:68–75. [PubMed] [Google Scholar]

109. Wictome M, Shone CC. Botulinum neurotoxins: Mode of action and detection. J Appl Microbiol. 1998;84:S87–97. [PubMed] [Google Scholar]

110. Cherington M. Clinical spectrum of botulism. Muscle Nerve. 1998;21:701–10. [PubMed] [Google Scholar]

111. Glasby C, Hatheway CL. Fluorescent-antibody reagents for the identification of Clostridium botulinum. J Clin Microbiol. 1983;18:1378–83. [PMC free article] [PubMed] [Google Scholar]

112. Lilly T, Kautter DA, Lynt RK, Solomon HM. Immunodiffusion detection of Clostridium botulinum colonies. J Food Prot. 1984;47:868–75. [Google Scholar]

113. Ogert RA, Brown JE, Singh BR, Shriver-Lake LC, Ligler FS. Detection of Clostridium botulinum toxin A using a fiber optic-based biosensor. Anal Biochem. 1992;205:306–12. [PubMed] [Google Scholar]

114. Ekong TAN, McLellan K, Sesardic D. Immunological detection of Clostridium botulinum type A in therapeutic preparations. J Immunol Meth. 1995;180:181–91. [PubMed] [Google Scholar]

115. Doellgast GJ, Beard GA, Bottoms JD, Cheng T, Roh BH, Roman MG, et al. Enzyme-linked immunosorbent assay and enzyme-linked coagulation assay for detection of Clostridium botulinum neurotoxins A, B, and E and solution-phase complexes with dual-label antibodies. J Clin Microbiol. 1994;32:105–11. [PMC free article] [PubMed] [Google Scholar]

116. Fach P, Perrelle S, Dilasser F, Grout J, Dargaignaratz C, Botella L, et al. Detection by PCR-enzyme-linked immunosorbent assay of Clostridium botulinum in fish and environmental samples from a coastal area in northern France. Appl Environ Microbiol. 2002;68:5870–6. [PMC free article] [PubMed] [Google Scholar]

117. Hallis B, James BAF, Shone CC. Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. J Clin Microbiol. 1996;34:1934–8. [PMC free article] [PubMed] [Google Scholar]

118. Schmidt JJ, Stafford RG. Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F. Appl Environ Microbiol. 2003;69:297–303. [PMC free article] [PubMed] [Google Scholar]

119. Ferreira JL, Handy MK, McCay SG, Baumstark BR. An improved assay for identification of type A Clostridium botulinum using the polymerase chain reaction. J Rapid Methods Automat Microbiol. 1992;1:293–9. [Google Scholar]

120. Campbell KD, Collins MD, East AK. Gene probes for identification of the botulinum neurotoxin gene and specific identification of neurotoxin types B, E and F. J Clin Microbiol. 1993;31:2255–62. [PMC free article] [PubMed] [Google Scholar]

121. Szabo EA, Pemberton JM, Desmarchelier PM. Detection of genes encoding botulinum neurotoxins types A to E by polymerase chain reaction. Appl Environ Microbiol. 1993;59:3011–20. [PMC free article] [PubMed] [Google Scholar]

122. Szabo EA, Pemberton JM, Gibson AM, Eyles MJ, Desmarchelier PM. Polymerase chain reaction for detection of Clostridium botulinum type A, B, and E in Food, soil, and infant feces. J Appl Bacteriol. 1994;76:539–45. [PubMed] [Google Scholar]

123. Fach P, Hauser D, Guillou JP, Popoff MR. Polymerase chain reaction for the rapid identification of Clostridium botulinum type A strains and detection in food samples. J Appl Bacteriol. 1993;75:234–9. [PubMed] [Google Scholar]

124. Hielm S, Hyytia E, Ridell J, Korkeala H. Detection of Clostridium botulinum in fish and environmental samples using polymerase chain reaction. Int J Food Microbiol. 1996;31:357–65. [PubMed] [Google Scholar]

125. Aranda E, Rodriguez MM, Asensio MA, Cordoba JJ. Detection of Clostridium botulinum types A, B, E and F in foods by PCR and DNA probe. Lett Appl Microbiol. 1997;25:186–90. [PubMed] [Google Scholar]

126. Lindstrom M, Keto R, Markkula A, Nevas M, Hielm S, Korkeala H. Multiplex PCR assay for detection and identification of Clostridium botulinum type A, B, E, and F in food and fecal material. Appl Environ Microbiol. 2001;67:5694–9. [PMC free article] [PubMed] [Google Scholar]

127. Lin WJ, Johnson EA. Genome analysis of Clostridium botulinum type A by pulsed-field gel electrophoresis. Appl Environ Microbiol. 1995;61:4441–7. [PMC free article] [PubMed] [Google Scholar]

128. Hielm S, Bjorkroth J, Hyytia E, Korkeala H. Genomic analysis of Clostridium botulinum group II by pulsed-field gel electrophoresis. Appl Environ Microbiol. 1998;64:703–8. [PMC free article] [PubMed] [Google Scholar]

129. Hielm S, Bjorkroth J, Hyytia E, Korkeala H. Ribotyping as an identification tool for Clostridium botulinum species causing human botulism. Int J Food Microbiol. 1999;47:121–31. [PubMed] [Google Scholar]

130. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, et al. Botulinum toxin as a biological weapon: Medical and public health management. JAMA. 2001;285:1059–70. [PubMed] [Google Scholar]

131. Siegel LS. Human response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme linked immunosorbent assay. J Clin Microbiol. 1988;25:2351–6. [PMC free article] [PubMed] [Google Scholar]

132. Pittman PR, Hack D, Mangiafico J, Gibbs P, McKee KT, Jr, Friedlander AM, et al. Antibody response to a delayed booster dose of anthrax vaccine and botulinum toxoid. Vaccine. 2002;20:2107–15. [PubMed] [Google Scholar]

133. Byrne MP, Smith LA. Development of vaccine for prevention of botulism. Biochimie. 2000;82:955–66. [PubMed] [Google Scholar]

134. Atassi MZ, Oshima M. Structure, activity and immune (T & B cell) recognition of botulinum neurotoxin. Crit Rev Immunol. 1999;19:219–60. [PubMed] [Google Scholar]

135. Lee JS, Pushko P, Parker MD, Dertzbaugh MT, Smith LA, Smith JF. Candidate vaccine against botulinum neurotoxin serotype A derived from a Venezuelan equine encephalitis virus vector system. Infect Immun. 2001;69:5709–15. [PMC free article] [PubMed] [Google Scholar]

136. Byrne MP, Smith TJ, Montegomery VA, Smith LA. Purification, potency and efficacy of botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infect Immun. 1998;66:4817–22. [PMC free article] [PubMed] [Google Scholar]

137. Bennett AM, Perkins SD, Holley JL. DNA vaccination protects against botulinum neurotoxin type F. Vaccine. 2003;21:3110–7. [PubMed] [Google Scholar]

138. Zeng M, Xu Q, Elias M, Pichichero ME, Simpson LL, Smith LA. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine. Vaccine. 2007;25:7540–8. [PMC free article] [PubMed] [Google Scholar]

139. Xu Q, Pichichero ME, Simpson LL, Elias M, Smith LA, Zeng M. An adenoviral vector-based mucosal vaccine is effective in protection against botulism. Gene Ther. 2009;16:367–75. [PMC free article] [PubMed] [Google Scholar]

140. Tackett CO, Shandera WX, Mann JM, Hargrett NT, Blake PA. Equine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am J Med. 1984;76:794–8. [PubMed] [Google Scholar]

141. Francisco AM, Arnon SS. Clinical mimics of infant botulism. Pediatrics. 2007;119:826–8. [PubMed] [Google Scholar]

143. Black RE, Gunn RA. Hypersensitivity reactions associated with botulinal antitoxin. Am J Med. 1980;69:567–70. [PubMed] [Google Scholar]

144. Arnon SS. Creation and development of the public service orphan drug human botulism immune globulin. Pediatrics. 2007;119:785–9. [PubMed] [Google Scholar]

145. Jing Z, Miao WY, Ding FH, Meng JY, Ye HJ, Jia GR, et al. The effect of toosendanin on monkey botulism. J Tradit Chin Med. 1985;5:29–30. [PubMed] [Google Scholar]

146. Shi YL, Wang ZF. Cure of experimental botulism and antibotulismic effect of toosendanin. Acta Pharmacol Sin. 2004;25:839–48. [PubMed] [Google Scholar]

147. Shi YL, Li MF. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog Neurobiol. 2007;82:1–10. [PubMed] [Google Scholar]

148. Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, et al. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci USA. 2009;106:1330–5. [PMC free article] [PubMed] [Google Scholar]

149. Boldt GE, Kennedy JP, Janda KD. Identification of a potent botulinum neurotoxin a protease inhibitor using in situ lead identification chemistry. Org Lett. 2006;8:1729–32. [PMC free article] [PubMed] [Google Scholar]

150. Burnett JC, Ruthel G, Stegmann CM, Panchal RG, Nguyen TL, Hermone AR, et al. Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J Biol Chem. 2007;282:5004–14. [PubMed] [Google Scholar]

151. Kumaran D, Rawat R, Ludivico ML, Ahmed SA, Swaminathan S. Structure and substrate based inhibitor design for Clostridium botulinum neurotoxin serotype A. J Biol Chem. 2008;283:18883–91. [PubMed] [Google Scholar]

152. Silvaggi NR, Wilson D, Tzipori S, Allen KN. Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry. 2008;47:5736–45. [PubMed] [Google Scholar]

153. Cai S, Singh BR. Strategies to design inhibitors of Clostridium botulinum neurotoxins. Infectious Disorders – Drug Targets. 2007;7:47–57. [PubMed] [Google Scholar]

154. Tok JB, Fischer NO. Single microbead SELEX for efficient ssDNA aptamer generation against botulinum neurotoxin. Chem Commun. 2008;28:1883–5. [PubMed] [Google Scholar]

155. Zhang P, Ray R, Singh BR, Li D, Adler M, Ray P. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacol. 2009;9:12. [PMC free article] [PubMed] [Google Scholar]

156. Scott AB. Botulinum injection into extraocular muscles as an alternative to strabismus surgery. Opthalmology. 1980;87:1044–9. [PubMed] [Google Scholar]

157. Scott AB. Botulinum toxin injection of eye muscles to correct strabismus. Trans Am Opthalmol Soc. 1981;79:734–70. [PMC free article] [PubMed] [Google Scholar]

158. Lew MF, Adornato BT, Duane DD, Dykstra DD, Factor SA, Massey JM, et al. Botulinum toxin type B: A double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. Neurology. 1997;49:701–7. [PubMed] [Google Scholar]

159. Mezaki T, Kaji R, Kohara N, Fujii H, Katayama M, Shimizu T, et al. Comparison of therapeutic efficacies of type A and F botulinum toxins for blepharospasm: A double-blind, controlled study. Neurology. 1995;45:506–8. [PubMed] [Google Scholar]

160. Maselli RA, Burnett ME, Tonsgard JH. In vitro microelectrode study of neuromuscular transmission in a case of botulism. Muscle Nerve. 1992;15:273–6. [PubMed] [Google Scholar]

161. Ranoux D, Gury C, Fondarai J, Mas JL, Zuber M. Respective potencies of Botox® and Dysport® : A double blind, randomised, crossover study in cervical dystonia. J Neurol Neurosurg Psychiatry. 2002;72:459–62. [PMC free article] [PubMed] [Google Scholar]

162. Sampaio C, Costa J, Ferreira JJ. Clinical comparability of marketed formulations of botulinum toxin. Mov Disord. 2004;19:S129–36. [PubMed] [Google Scholar]

163. Dressler D, Benecke R. Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil. 2007;29:1761–8. [PubMed] [Google Scholar]

164. Jost WH, Blumel J, Grafe S. Botulinum neurotoxin type A free of complexing proteins (Xeomin) in focal dystonia. Drugs. 2007;67:669–83. [PubMed] [Google Scholar]

165. Jankovic J. Botulinum toxin therapy for cervical dystonia. Neurotox Res. 2006;9:145–8. [PubMed] [Google Scholar]

166. Simpson DM, Gracies JM, Graham HK, Miyasaki JM, Naumann M, Russman B, et al. Assessment: Botulinum neurotoxin for the treatment of movement disorders (an evidence-based review) Neurology. 2008;70:1691–8. [PubMed] [Google Scholar]

167. Frei K, Truong DD, Dressler D. Botulinum toxin therapy of hemifacial spasm: comparing different therapeutic preparations. Eur J Neurol. 2006;13:30–5. [PubMed] [Google Scholar]

168. Naumann M, Jost W. Botulinum toxin treatment of secretory disorders. Mov Disord. 2004;19:S137–41. [PubMed] [Google Scholar]

169. Brin MF, Lyons KE, Doucette J, Adler CH, Caviness JN, Comella CL, et al. A randomized, double masked, controlled trial of botulinum toxin type A in essential hand tremor. Neurology. 2001;56:1523–8. [PubMed] [Google Scholar]

170. Lang AM. Botulinum toxin type A therapy in chronic pain disorders. Arch Phys Med Rehabil. 2003;84:S69–73. [PubMed] [Google Scholar]

171. Schurch B, Schmid DM, Knapp PA. An update on the treatment of detrusor-sphincter dyssynergia with botulinum toxin type A. Eur J Neurol. 2007;6:S83–9. [Google Scholar]

172. Dutton JJ, Fowler AM. Botulinum toxin in ophthalmology. Surv Ophthalmol. 2007;52:13–31. [PubMed] [Google Scholar]

173. Flynn TC. Update on botulinum toxin. Semin Cutan Med Surg. 2006;25:115–21. [PubMed] [Google Scholar]

174. Madalinski M, Chodorowski Z. Why the most potent toxin may heal anal fissure. Adv Ther. 2006;23:627–34. [PubMed] [Google Scholar]

175. Ghazizadeh S, Nikzad M. Botulinum toxin in the treatment of refractory vaginismus. Obstet Gynecol. 2004;104:922–5. [PubMed] [Google Scholar]

176. Thwaini A, Shergill I, Radhakrishnan S, Chinegwundoh F, Thwaini H. Botox in urology. J Int Urogynecol. 2006;17:536–40. [PubMed] [Google Scholar]

177. Song PC, Schwartz J, Blitzer A. The emerging role of botulinum toxin in the treatment of temporomandibular disorders. Oral Dis. 2007;13:253–60. [PubMed] [Google Scholar]

178. Jankovic J, Brin MF. Botulinum toxin: Historical perspective and potential new indications. Muscle Nerve. 1997;20:S129–45. [PubMed] [Google Scholar]

179. Blitzer A, Binder WJ, Aviv JE, Keen MS, Brin MF. The management of hyperfunctional facial lines with botulinum toxin. A collaborative study of 210 injection sites in 162 patients. Arch Otolaryngol. 1997;123:389–92. [PubMed] [Google Scholar]

180. Anderson ER., Jr Proper dose, preparation, and storage of botulinum neurotoxin serotype A. Am J Health Syst Pharm. 2004;61((22 Suppl 6)):S24–29. [PubMed] [Google Scholar]

181. Hexsel D, Dal’Forno T, Hexsel C, Do Prado DZ, Lima MM. A randomized pilot study comparing the action halos of two commercial preparations of botulinum toxin type A. Dermatol Surg. 2008;34:52–9. [PubMed] [Google Scholar]

182. Singh BR, Thirunavukkarasu N, Ghosal K, Ravichandran E, Kukreja R, Cai S, et al. Clostridial neurotoxins as a drug delivery vehicle targeting nervous system. Biochimie. 2010;92:12532–9. [PubMed] [Google Scholar]

183. Chaddock JA, Purkiss JR, Duggan MJ, Quinn CP, Shone CC, Foster KA. A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro. Growth Fact. 2000;18:147–55. [PubMed] [Google Scholar]

184. Simpson LL. Identification of the characteristics that underlie botulinum toxin potency: Implications for designing novel drugs. Biochimie. 2000;82:943–53. [PubMed] [Google Scholar]

Read More