References

  1. Suresh, S. Fatigue of Materials (Cambridge Univ. Press, 2001).

  2. Pan, Q., Zhou, H., Lu, Q., Gao, H. & Lu, L. History-independent cyclic response of nanotwinned metals. Nature 551, 214–217 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  3. Kruzic, J. J. Predicting fatigue failure. Science 325, 156–158 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  4. Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  5. Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S. & White, S. R. Self-healing materials with microvascular networks. Nat. Mater. 6, 581–585 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  6. Urban, M. W. Key-and-lock commodity self-healing copolymers. Science 362, 220–225 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  7. Hager, M. D., Greil, P., Leyens, C., van der Zwaag, S. & Schuber, U. S. Self-healing materials. Adv. Mater. 22, 5424–5430 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  8. Li, X. et al. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl Acad. Sci. USA 117, 7606–7612 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  9. Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S. & White, S. R. Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  10. Koyama, M. et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055–1057 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  11. Cheng, Z., Zhou, H., Lu, Q., Gao, H. & Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 362, eaau1925 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  12. Munch, E. et al. Tough, bio-inspired hybrid mateirals. Science 322, 1516 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  13. Suresh, S. Crack deflection: implications for the growth of long and short fatigue cracks. Metall. Trans. A 14A, 2375 (1983).

    Article 
    ADS 

    Google Scholar
     

  14. Fang, H. et al. Self healing of creep damage in iron-based alloys by supersaturated tungsten. Acta Mater. 166, 531–542 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  15. van Dijk, N. & van der Zwaag, S. Self-healing phenomena in metals.Adv. Mater. Interfaces 5, 1800226 (2018).

    Article 

    Google Scholar
     

  16. Leeuwenburgh, S. C. G., De Belie, N. & van der Zwaag, S. Self-healing materials are coming of age.Adv. Mater. Interfaces 5, 1800736 (2018).

    Article 

    Google Scholar
     

  17. Wang, Y. et al. Self-healing of fractured GaAs nanowires. Nano Lett. 11, 1546–1549 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  18. Manuel, M. V. in Self‐Healing Materials: Fundamentals, Design Strategies, and Applications (ed. Swapan, K. G.) 251–263 (Wiley-VCH, 2008).

  19. Fisher, C. R. et al. Repairing large cracks and reversing fatigue damage in structural metals. Appl. Mater. Today 13, 64–68 (2018).

    Article 

    Google Scholar
     

  20. Xu, G. & Demkowicz, M. J. Crack healing in nanocrystalline palladium. Extreme Mech. Lett. 8, 208–212 (2016).

    Article 

    Google Scholar
     

  21. Xu, G. Q. & Demkowicz, M. J. Healing of nanocracks by disclinations. Phys. Rev. Lett. 111, 145501 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  22. Suresh, S., Zamiski, G. F. & Ritchie, R. O. Oxide induced crack closure: an explanation for near-threshold corrosion fatigue crack growth behavior. Metall. Trans. A 12A, 1435–1443 (1981).

    Article 
    ADS 

    Google Scholar
     

  23. Suresh, S. & Ritchie, R. O. A geometric model for fatigue crack closure induced by fracture surface roughness. Mater. Sci. Eng. A 150, 209–212 (1982).


    Google Scholar
     

  24. Suresh, S. & Ritchie, R. O. Near Threshold Fatigue Crack Propagation: A Perspective on the Role of Crack Closure Report No. LBL-16263 (Lawrence Berkeley Lab., 1983).

  25. Randle, V. An investigation of grain-boundary plane crystallography in polycrystalline nickel. J. Mater. Sci. 30, 3983–3988 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  26. Randle, V., Caul, M. & Fiedler, J. Twinning and interfacial planes in copper. Microsc. Microanal. 3, 224–233 (2003).

    Article 
    ADS 

    Google Scholar
     

  27. Ke, X. et al. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals. Nat. Mater. 18, 1207–1214 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  28. Wang, Y. M. et al. Defective twin boundaries in nanotwinned metals. Nat. Mater. 12, 697–702 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  29. Hirth, J. P., Wang, J. & Tomé, C. N. Disconnections and other defects associated with twin interfaces. Prog. Mater. Sci. 83, 417–471 (2016).

    Article 

    Google Scholar
     

  30. Dai, G., Wang, B., Xu, S., Lu, Y. & Shen, Y. Side-to-side cold welding for controllable nanogap formation from “dumbbell” ultrathin gold nanorods. ACS Appl. Mater. Interfaces 8, 13506–13511 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  31. Ferguson, G. S., Chaudhury, M. J., Sigal, G. B. & Whitesides, G. M. Contact adhesion of thin gold films on elastomeric supports: cold welding under ambient conditions. Science 253, 776–778 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  32. Lu, Y., Huang, J. Y., Wang, C., Sun, S. & Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218–224 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  33. Wagle, D. V. & Baker, G. A. Cold welding: a phenomenon for spontaneous self-healing and shape genesis at the nanoscale. Mater. Horizons 2, 157–167 (2015).

    Article 
    CAS 

    Google Scholar
     

  34. Thomas, S. L., Wei, C., Han, J., Xiang, Y. & Srolovitz, D. J. Disconnection description of triple-junction motion. Proc. Natl Acad. Sci. USA 116, 8756–8765 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  35. Bufford, D. C. et al. High cycle fatigue in the transmission electron microscope. Nano Lett. 16, 4946–4953 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  36. Sarkar, R., Rentenberger, C. & Rajagopalan, J. Electron beam induced artifacts during in situ TEM deformation of nanostructured metals. Sci. Rep. 5, 16345 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  37. Raabe, D., Sachtleber, M., Zhao, Z., Roters, F. & Zaefferer, S. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater. 49, 3433–3441 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  38. Lim, H. et al. Grain-scale experimental validation of crystal plasticity finite element simulations of tantalum oligocrystals. Int. J. Plast. 60, 1–18 (2014).

    Article 
    CAS 

    Google Scholar
     

  39. Cahn, J. W., Mishin, Y. & Suzuki, A. Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953–4975 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  40. Mompiou, F., Caillard, D. & Legros, M. Grain boundary shear–migration coupling. I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57, 2198–2209 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  41. Ferguson, G. S., Chaudhury, M. K., Sigal, G. B. & Whitesides, G. M. Contact adhesion of thin gold films on elastomeric supports: cold welding under ambient conditions. Science 253, 776–778 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  42. Kim, C., Burrows, P. E. & Forrest, S. R. Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  43. Baumert, E. K., Sadeghi-Tohidi, F., Hosseinian, E. & Pierron, O. N. Fatigue-induced thick oxide formation and its role on fatigue crack initiation in Ni thin films at low temperatures. Acta Mater. 67, 156–167 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  44. Maierhofer, J., Simunek, D., Gänser, H.-P. & Pippan, R. Oxide induced crack closure in the near threshold regime: the effect of oxide debris release. Int. J. Fatigue 117, 21–26 (2018).

    Article 
    CAS 

    Google Scholar
     

  45. Moore, A. J. W. Deformation of metals in static and in sliding contact. Proc. R. Soc. A 195, 231–244 (1948).

    ADS 

    Google Scholar
     

  46. Wang, Q. et al. Gigacycle fatigue of ferrous alloys. Fatigue Fract. Eng. Mater. Struct. 22, 667–672 (1999).

    Article 
    CAS 

    Google Scholar
     

  47. Snowden, K. U. The effect of atmosphere on the fatigue of lead. Acta Metall. 12, 295–303 (1964).

    Article 
    CAS 

    Google Scholar
     

  48. Boyce, B. L., Michael, J. R. & Kotula, P. G. Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater. 52, 1609–1619 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  49. Jiang, R. & Reed, P. A. S. Critical Assessment 21: oxygen-assisted fatigue crack propagation in turbine disc superalloys. Mater. Sci. Technol. 32, 401–406 (2016).

    Article 
    ADS 

    Google Scholar
     

  50. Radon, J. A model for fatigue crack growth in a threshold region. Int. J. Fatigue 4, 161–166 (1982).

    Article 

    Google Scholar
     

  51. Pippan, R. & Hohenwarter, A. Fatigue crack closure: a review of the physical phenomena. Fatigue Fract. Eng. Mater. Struct. 40, 471–495 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  52. Oguma, H. & Nakamura, T. Fatigue crack propagation properties of Ti–6Al–4V in vacuum environments. Int. J. Fatigue 50, 89–93 (2013).

    Article 
    CAS 

    Google Scholar
     

  53. Wang, Q., Bathias, C., Kawagoishi, N. & Chen, Q. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int. J. Fatigue 24, 1269–1274 (2002).

    Article 
    CAS 

    Google Scholar
     

  54. Stephens, R., Dubensky, R., Frauen, L. & Wrenn, R. Fatigue Behavior of Molybdenum (Iowa Univ., 1970).

  55. Oh, Y., Cyrankowski, E., Shan, Z. & Asif, S. A. S. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer. US patent US-8789425-B2 (2014).

  56. Chisholm, C. et al. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 60, 2258–2264 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  57. Hattar, K., Bufford, D. C. & Buller, D. L. Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res. Sect. B 338, 56–65 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  58. Heckman, N. M. et al. New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys. Nanoscale 10, 21231–21243 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  59. Ohr, S. M. An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater. Sci. Eng. 72, 1–35 (1985).

    Article 
    CAS 

    Google Scholar
     

  60. Christ, H. J., Fritzen, C. P. & Köster, P. Micromechanical modeling of short fatigue cracks. Curr. Opin. Solid State Mater. Sci. 18, 205–211 (2014).

    Article 
    ADS 

    Google Scholar
     

  61. Rauch, E. F. & Véron, M. Automated crystal orientation and phase mapping in TEM. Mater. Charact. 98, 1–9 (2014).

    Article 
    CAS 

    Google Scholar
     

  62. Leff, A. C., Weinberger, C. R. & Taheri, M. L. Estimation of dislocation density from precession electron diffraction data using the Nye tensor. Ultramicroscopy 153, 9–21 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  63. Zhou, X. W., Johnson, R. A. & Wadley, H. N. G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers.Phys. Rev. B 69, 144113 (2004).

    Article 
    ADS 

    Google Scholar
     

  64. Kung, H. et al. Observation of body centered cubic Cu in Cu/Nb nanolayered composites. Appl. Phys. Lett. 71, 2103–2105 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  65. Petrov, I., Barna, P. B., Hultman, L. & Greene, J. E. Microstructural evolution during film growth. J. Vacuum Sci. Tech. A Vacuum Surfaces Films 21, S117–S128 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  66. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  67. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article 
    ADS 

    Google Scholar
     

Download references

Read More